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The interfacial energies of twin boundaries and stacking faults in metal magnesium have 

been calculated using first-principles supercell approach. Four types of twin boundaries and two 

types of stacking faults are investigated, namely, those due to the (101ത1)  mirror reflection, the 

(101ത1) mirror glide, the (101ത2) mirror reflection, the (101ത2) mirror glide, the I1 stacking fault, 

and I2 stacking fault. The effects of supercell size on the calculated interfacial energies are 

examined. The calculated interfacial energies are 85.5, 81.0, 118.1, 120.0, 8.1, and 21.8 mJ/m2, 

respectively, for the six types of atomic configurations.  
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Magnesium alloys are increasingly being used in a wide range of applications due to their 

light weight and high strength. One of the current research frontiers on Mg alloys is to 

understand, estimate, and improve their low plastic formability to operate under increasingly 

demanding conditions. At the atomic scale, the plastic formability is closely related to the ease of 

the formation of planar defects along the close packed planes, namely, twin and stacking faults 

[1-5]. Experimentally, direct measurements of interfacial energies require very delicate 

techniques and the results often show large uncertainties. For instance, the measured stacking 

fault energies [6-8] (and references therein) for magnesium are scattered in the range of 50 – 280 

mJ/m2. Alternatively, the steady improvement in both computer power and the efficiency of 

computational methods in the past few years has enabled the calculation of defect energetics at 

reasonable computational cost. [9] For the case of metal magnesium, existing first-principles 

results are scattered among specific types of twin-boundary, stacking-fault, approximation to 

exchange-correlation energy, and supercell size. [10-14]  The main purpose of this paper is 

report the calculation of interfacial energies of twinning and stacking faults in magnesium from a 

unified theoretical framework. In particular, we report our calculated results for the (101ത1) 

mirror reflection, the (101ത1) mirror glide, the (101ത2) mirror reflection, and the (101ത2) mirror 

glide twin-boundaries together with the I1 fault and I2 stacking-faults.  The effect of supercell 

size on the calculated interfacial energies will be discussed. 

Interface supercell: Since we employ first-principles approach with periodic boundary 

conditions, the interfaces due to twinning and stacking faults are modeled using a supercell. In 

fact, the crystallographic theory of twinning [2] is rather complicated for a hexagonal close 

packed (hcp) metal. For the special cases of (101ത1) and (101ത2) twins, following Morris et al. 

[11], the supercells are built by first transforming the hcp structure into the orthogonal structure 



(see Fig. 1) by which both the (101ത1) and (101ത2) planes can be seen more clearly. Secondly, the 

a lattice vector of the supercell is taken as that parallel to paper surface and within the (101ത1) or 

(101ത2) plane and the b lattice vector of the supercell is taken as that vertical to paper surface and 

within the (101ത1) or (101ത2) plane. Furthermore, the c lattice vector of the supercell is derived in 

the direction perpendicular to both a and b. Then, cut away the atoms that above the interfacial 

plane that pass through a and b, followed by making a mirror reflection with respect to the 

interfacial plane that pass through a and b. The last step is to shift the atoms that are nearest to 

the interfacial plane to the interfacial plane for the mirror reflection twin or to shift the reflected 

atoms by b /2 for the mirror glide twin. The examples of the built supercells for the (101ത1) and 

(101ത2) twins are illustrated in Fig.2 and Fig. 3, respectively. The supercells for the I1 and I2 

stacking faults are relatively easier to build. Take the case of 32-atom supercell (16-layer) as an 

example, they are just the ABABABABCBCBCBCB and ABABABABCACACACB 

arrangements, respectively, for the I1 and I2 stacking faults. [12] Note that by supercell approach, 

each supercell contains two interfaces. The effect of supercell sizes on the calculated interfacial 

energies is studied. The built supercells with different sizes are listed in Table 1.  

Computational settings: To calculate the 0 K energies, we employed the Vanderbilt 

ultrasoft pseudopotential [15] within the generalized gradient approximation (GGA) [16] to the 

exchange-correlation energy as implemented in the VASP package.  [17, 18] The plane wave 

energy cutoff is 132.7 eV which is an automatic value when setting the key “Prec=High” in 

VASP. The calculation of interfacial energy involves finding the difference between two total 

energies. We have therefore adopted very dense k points (See Table 1) and the Gamma centered 

scheme is used. We extracted the interfacial energy, ζ, by 

 



ߞ ൌ ሺܧௌ௨௣௘௥௖௘௟௟ െ  ,ܣ௛௖௣ሻ/2ܧ

 

noting that ܧௌ௨௣௘௥௖௘௟௟ is total energy of the supercell, ܧ௛௖௣ is total energy of hcp Mg scaled to the 

supercell size, and A is interfacial area which is scalar value of the cross product of lattice vector 

a and b. We note that in the above procedure of extracting the interfacial energy, the elastic 

energy resulted from the formation of interface has not been considered separately. This is a 

reasonable approximation for the twin-boundary in hcp Mg, as it will be seen that the calculated 

interfacial energies are just weakly dependent on the supercell size (See Table 1).  

 Results and discussions: The calculated interfacial energies are summarized in Table 1, 

together with and the measured stacking fault energies [6-8] and those previously calculated 

within different approaches. [4, 10-14] For the twin-boundaries, it is observed from our 

calculations that the effects of the gliding of the interfacial crystal planes on the interfacial 

energy are minor, and the interfacial energies of the twin-boundary are one magnitude larger 

than those of stacking-faults. It is further seen the effects of the supercell size on the calculated 

interfacial energies. For the twin-boundary, increasing the supercell size up to 80 atoms can only 

decrease the interfacial energy by less than 5%. However, the calculated interfacial energies for 

stacking-faults show strong dependence on the adopted supercell size, as it is seen from Table 1 

(I1 and I2) that the calculated interfacial energies are reduced by 50% when the supercell size is 

increased from 8 to 32. This is because that the interfacial energies for the I1 and I2 stacking-

faults are small number whose calculations have reached the accuracy limit of the current first-

principles method.   



We assume that the larger the supercell sizes are the more accurate of the calculated 

interfacial energies are. For the six largest supercells of the six types of defects, our calculated 

interfacial energies are 85.5, 81.0, 118.1, 120.0, 8.1, and 21.8 mJ/m2, respectively, for the (101ത1) 

mirror reflection, the (101ത1) mirror glide, the (101ത2) mirror reflection, the (101ത2) mirror glide, 

the I1 stacking fault, and I2 stacking fault. In overall, these numbers are in good agreements with 

the reported results from the previous publications. Yoo et al. [14] calculated the (101ത1) and 

(101ത2) mirror reflection twins employing the ab initio method (no information was given on the 

employed potential and the approximation to the exchange-correlation energy by Yoo et al.), and 

reported the calculated interfacial energy values of 70 and 114 mJ/m2, respectively; Morris et al. 

employed the same ab initio method (the same group of Yoo et al. mentioned above) to calculate 

the (101ത2) mirror reflection and the (101ത2) mirror glide twins using 20-atom supercells and 

reported the same interfacial energy of 114 mJ/m2 for both the (101ത2) mirror reflection and the 

(101ത2) mirror glide twins.  The calculated interfacial energies of the I1 and I2 stacking faults by 

Smith et al. [12] were, respectively,  9 and 18 mJ/m2 using the 24-atom supercells (12 layers of 

Mg) and the ABINIT package [19] within GGA. The calculated interfacial energies of the I1 and 

I2 stacking faults by Chetty and Weinert [10] were,  respectively,  10 and 22 mJ/m2 using the 24-

atom supercells (12 layers of Mg) within the local density approximation (LDA) [20]. The 

calculated interfacial energies of I2 stacking fault by Uesugi et al. [13] was 16 mJ/m2 using 

CASTEP package [21] within GGA. Other results for stacking-fault energies are from the 

embedded atom method (EAM) by Hu et al. [4] who reported the interfacial energies are 4, and 8 

mJ/m2, respectively, for the I1and I2 stacking faults, respectively. 

In summary, the interfacial energies for four types of twin boundaries and two types of 

stacking faults observed in metal magnesium have been obtained through first-principles 



calculations. It therefore offers a unified picture of the interfacial energies for these lattice 

mismatches within the same theoretical framework. The calculated values can also serve as the 

input for the future simulation of the growth process of these planar defects or the estimation of 

the effects of these lattice mismatches on the mechanical properties of magnesium alloys. 
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 Figure 1 (color online). The (૚૙૚ഥ૚) and (૚૙૚ഥ૛) planes in hcp metals. The heavy (blue) and 

light (yellow) balls are used to represent the A and B atomic layers in c direction conventionally 

used for the hcp structure.  The grey box shows the orthogonal cell mapped from the hcp cell.  

    

  



Figure 2 (color online). Structures of (૚૙૚ഥ૛) mirror reflection twin-boundary (left panel) and 

(૚૙૚ഥ૛) mirror glide twin-boundary (right panel). See also Fig. 1 for meanings of the balls. 

    

 

  



 

Figure 3 (color online). Structures of (૚૙૚ഥ૚) mirror reflection twin-boundary (left panel) and 

(૚૙૚ഥ૚) mirror glide twin-boundary (right panel). See also Fig. 1 for meanings of the balls. 

    

 

  



Table 1. Computational settings and interfacial energies. For the I1 and I2 stacking faults, the 

reported stacking fault energies in the literatures [6-8, 10, 12, 13] have been divided by a factor 

of two since I1 and I2 contain two interfaces [12]. 

 k-mesh Supercell 

size 

Interfacial energy (mJ/m2) 

  This work Previous 

Calculation 

Measurements 

hcp Mg 25×25×15 2 0.   

(૚૙૚ഥ૚) 7×25×4 40 84.2 70a  

 9×31×3 80 85.5   

(૚૙૚ഥ૚)g 7×25×4 40 84.2   

 9×31×3 80 81.0   

(૚૙૚ഥ૛) 17×39×7 20 122.3   

 11×25×3 40 118.8 114b;114a  

 13×31×2 80 118.1   

(૚૙૚ഥ૛)g 17×39×7 20 125.3   

 11×25×3 40 120.8 114b  

 13×31×2 80 120.0   

I1 25×25×12 8 17.8 

9c; 10d; 4f 
<25g; 39h; >45i; 

51~140j 

 25×25×9 16 13.1 

 25×25×6 32 8.1 

I2 25×25×12 8 38.3 
18c; 22d; 16e; 8f  

 25×25×9 16 27.7 



 25×25×6 32 21.8 

a. Yoo et al.  [14], ab initio calculation (See the text). 

b. Morris et al. [11], ab initio calculation (See the text). 

c. Smith, [12] ABINIT 24-atom supercell within GGA. 

d. Chetty and Weinert, [10] LDA. 

e. Uesugi et al., GGA [13]. 

f. Hu et al. [4], EAM. 

g. Court and Caillard. [7] 

h. Sastry et al. [6] 

i. Fleischer. [8] 

j. Quoted by Fleischer. [8] (See references therein). 

 

 

 

 

 


